Гамма-излучение. характичестика, источники, воздействие.

Что такое гамма-излучений и что излучает

Просмотрено: 42211

Среди изобилия различных излучений, наряду с рентгеновским лучом расположились весьма короткие волны – гамма лучи. Обладая той же природой, что и свет, может набирать скорость до 300 тысяч километров в секунду.

Учитывая особые свойства, данные частицы оказывают пагубное воздействие на все живые организмы, а именно – травмирующее, отравляющее. Именно поэтому важно узнать, как и чем можно защитить себя от подобного облучения.

Важно

Особенности лучей

Гамма-излучения является наиболее опасным по сравнению с бета, альфа-частицами, поэтому нужна прочная и надежная защита. Гамма-излучение имеет особые источники – космические лучи, распад ядерных атомов, а также их взаимодействие. Частота гамма-излучения больше 3·1018 Гц.

Гамма-излучение приходит из глубин космоса, рождается на земле, поэтому оказывает опасное ионизирующее влияние на человеческий организм. Что касается дозы гамма-излучения, то она зависит от многих факторов.

Не стоит забывать об особой закономерности, которая гласит, чем меньше длина волны гамма излучения, тем выше энергия у дозы, эквивалента. Именно поэтому можно смело говорить, что гамма-излучение – это некий поток квантовый, обладающий очень большой энергией.

Гамма-излучение имеет разрушающее воздействие, заключающееся в следующем:

  • За счет высокой проникающей способности, единицы облучения с легкостью проникают в клетки и живые организмы, провоцируя поражение, сильное отравление.
  • В процессе движения поток частиц оставляет поврежденные ионы, молекулы, которые начинают ионизировать новые дозы молекул.
  • Подобная клеточная трансформация становится причиной огромных изменений в структуре. Что касается разрушенных, изменившихся частей клеток, получивших дозы облучения, начинается отравление за счет яда.
  • Завершающий этап – рождение новых, дефектных клеток, неспособных выполнять собственные функции, так как мощность поражения слишком велика.

Гамма-излучение несет особую опасность, которая усугубляется тем, что человек неспособен самостоятельно почувствовать всю мощность воздействия радиоактивной волны. Подобное явление происходит вплоть до смертельной дозы.

Каждый человеческий орган имеет определенную чувствительность к влиянию радиационной волны, которую дает гамма-излучение. Особая уязвимость наблюдается у делящихся кровеносных клеток, лимфатических желез и ЖКТ, ДНК и фолликул волосяных.

Обратите внимание

Поток гамма частиц способен разрушить слаженность всех процессов, которые действуют в живом организме. Гамма-излучение приводит к серьезной мутации, которая затрагивает генетический механизм.

Важно знать, что гамма-излучение, любой дозы, может скапливаться, а затем начать действовать.

Сила облучения

Что касается единицы амбиентного экивалента дозы, то это особая биологическая доза нейтронного излучения гамма частиц. Эквивалентной считается нормируемая величина ущерба, который наносит гамма-излучение.

К огромному сожалению, ее невозможно измерить, поэтому в практике принято использовать особые величины дозиметрические, которые можно приблизит к нормируемым. Основная величина – амбиентный эквивалент дозы.

Важно

Эквивалент амбиентный – это эквивалент дозы, созданный в фантоме шаровом на определенной глубине от поверхности, учитывая отношение к диаметру, который направлен параллельно излучению.

Эквивалент рассматривают в поле излучения, идентичное флюенсу, распределению энергетическому и составу. Подобный эквивалент способен выявить дозировку облучения, его мощность, которую может получить человек. Единица такого эквивалента – зиверт.

Следует отметить, что единица измерения коллективной дозировки считается человеко-зиверт, если же единица внесистемная, то человеко-бэр.

Интенсивность, мощность подобного облучения показывает приращение дозы под влиянием излучения за конкретную единицу времени. Размерность дозировки принято делить на единицу времени. Можно использовать разные единицы – 3в/час, м3в/год и прочее. Простыми словами, мощность эквивалентной дозы можно характеризовать дозировкой, которая была получена благодаря единице времени.

Мощность измеряют разнообразными приборами, у которых имеются химические системы, камеры ионизационные, а также те камеры, которые содержат люминесцирующее вещество. Мощность измеряется на высоте одного метра от поверхности земли.

Защитные мероприятия

Гамма-излучение и его источники являются чрезвычайно опасными для человеческого организма. Жизнь человека протекает на фоне природных электромагнитных излучений, имеющих разную длину волны и частоту. Несмотря на всплески, подобный вред минимален для людей, так как в качестве защиты выступает огромное расстояние, отделяющее источники радиации о всего живого.

Совсем другое – это источники земные. Например, наибольшую опасность несут такие источники, как АЭС: контуры технологические, реакторы и прочее.

Подобные рукотворные источники способны натворить беды и причинить печальные последствия, поэтому важно знать о мерах защиты от волны радиации гамма частиц.

Защита от гамма излучения организовывается в обучении персонала, имеющего отношение к такому источнику.

Основные мероприятия:

  • Защита временем и расстоянием.
  • Использование барьера, особого материала, имеющего большую плотность – сталь, бетон и свинец, стекло свинцовое.

Ослабит силу лучей вдвое можно так: воспользоваться свинцовой пластинкой, толщина которой составляет 1 сантиметр, воды – не менее 10 см, а бетона – 5 сантиметров. Однако данную преграду нельзя называть непреодолимой. Свинец не выдерживает высокой температуры, поэтому для горячих областей нужны другие металлы: тантал и вольфрам.

Чтобы сделать защитную одежду для персонала, необходимо применить специальный материал. Основой послужит каучук, пластик или же резина. Можно задействовать экраны противорадиационные.

Гамма облучение признано самым опасным, поэтому в качестве укрытия может послужить подвал дома. Укрытие будет надежнее, когда толстые стены.

Важно

Подвал, расположенный в многоэтажках, снижает воздействие и силу радиации в тысячу раз.

Источник: https://otravlenym.ru/himicheskie-otravlenija/izluchenie/gamma.html

Гамма излучение — способы защиты, источники и мощность

Гамма излучение представляет собой довольно серьезную опасность для человеческого организма, да и для всего живого в общем.

Это электромагнитные волны с очень маленькой длиной и высокой скоростью распространения.

Чем же они так опасны, и каким образом можно защититься от их воздействия?

О гамме излучение

Все знают, что атомы всех веществ содержат в себе ядро и электроны, которые вращаются вокруг него. Как правило, ядро – это довольно стойкое образование, которому трудно нанести повреждения.

При этом существуют вещества, ядра которых неустойчивы, и при некотором воздействии на них происходит излучение их составляющих. Такой процесс называется радиоактивным, он имеет определенные составляющие, названные по первым буквам греческого алфавита:

  • альфа,
  • бета,
  • гамма излучения.

Стоит отметить, что радиационный процесс подразделяется на два вида в зависимости от того, что именно в результате выделяется.

Виды:

  1. Поток лучей с выделением частиц – альфа, бета и нейтронное;
  2. Излучение энергии – рентгеновское и гамма.

Гамма излучение – это поток  энергии в виде фотонов.

Процесс разделения атомов под воздействием радиации сопровождается образованием новых веществ. При этом атомы вновь образовавшегося продукта имеют довольно нестабильное состояние.

Постепенно при взаимодействии элементарных частиц возникает восстановление равновесия. В результате происходит выброс лишней энергии в виде гаммы.

Проникающая способность такого потока лучей очень высока. Оно способно проникать через кожные покровы, ткани, одежду. Более тяжелым будет проникновение через металл. Чтобы задержать такие лучи необходима довольно толстая стена из стали или бетона.  Однако длина волныγ-излучения очень мала и составляет меньше 2·10−10 м, а ее частота  находится в диапазоне 3*1019 – 3*1021 Гц.

Гамма частицами являются фотоны с довольно высокой энергией. Исследователи утверждают, что энергия гаммы излучения может превышать показатель 105 эВ. При этом граница между рентгеновскими и γ-лучами далеко не резкая.

Источники:

  • Различные процессы в космическом пространстве,
  • Распад частиц в процессе опытов и исследований,
  • Переход ядра элемента из состояния с большой энергией в состояние покоя или с меньшей энергией,
  • Процесс торможения заряженных частиц в среде либо движение их  в магнитном поле.

Открыл гамма излучение французский физик Поль Виллар в 1900 году, проводя исследование излучения радия.

Чем опасно гамма-излучение

Гамма излучение является наиболее опасным, нежели альфа и бета.

Механизм действия:

  • Гамма лучи способны проникать через кожные покровы внутрь живых клеток, в результате происходит их повреждение и дальнейшее разрушение.
  • Поврежденные молекулы провоцируют ионизацию новых таких же частиц.
  • В результате возникает изменение в структуре вещества. Пострадавшие частицы при этом начинают разлагаться и превращаться в токсические вещества.
  • В итоге происходит образование новых клеток, но они уже с определенным дефектом и поэтому не могут полноценно работать.

Гамма излучения опасно тем, что такое взаимодействие человека с лучами  не ощущается им ни в коей мере. Дело в том, что каждый орган и система человеческого организма реагирует по-разному на γ-лучи.

Прежде всего, страдают клетки, способные быстро делиться.

Системы:

  • Лимфатическая,
  • Сердечная,
  • Пищеварительная,
  • Кроветворная,
  • Половая.

Оказывается негативное влияние и на генетическом уровне. Кроме того, такое излучение имеет свойство накапливаться в человеческом организме. При этом в первое время оно практически не проявляется.

Где применяется гамма-излучение

Несмотря на негативное влияние, ученые нашли и положительные стороны. В настоящее время такие лучи применяются в различных сферах жизни.

Гамма излучение — применение:

  • В геологических исследованиях с их помощью определяют длину скважин.
  • Стерилизация различных медицинских инструментов.
  • Используется для контроля внутреннего состояния различных вещей.
  • Точное моделирование пути космических аппаратов.
  • В растениеводстве применяется для вывода новых сортов растений из тех, что мутируют под воздействием лучей.

Излучение гамма частиц нашло свое применение в медицине. Используется оно в терапии онкологических больных.

Такой метод имеет название «лучевая терапия» и основывается на воздействии лучей на быстро делящиеся клетки. В результате при правильном использовании появляется возможность уменьшить развитие патологических клеток опухоли.

Однако такой метод, как правило, применяется в том случае, когда другие уже бессильны.

Отдельно стоит сказать о  влияние его на мозг человека

Современные исследования позволили установить, что мозг постоянно испускает электрические импульсы. Ученые считают, что гамма излучения возникает в те моменты, когда человеку приходится работать с разной информацией одновременно. При этом небольшое количество таких волн ведет к уменьшению запоминающей способности.

Как защититься от гамма-излучения

Какая же защита  существует, и что сделать, чтобы уберечься от этих вредных лучей?

В современном мире человек окружен различными излучениями со всех сторон. Однако гамма частицы из космоса оказывают минимальное воздействие. А вот то, что находится вокруг представляет гораздо большую опасность. Особенно это относится к людям, работающим на различных атомных станциях. В таком случае защита от гамма излучения состоит в применении некоторых мер.

Меры:

  • Не находится длительное время в местах с таким излучением. Чем дольше времени человек находится под воздействием этих лучей, тем больше разрушений возникнет в организме.
  • Не стоит находиться там, где расположены источники излучения.
  • Необходимо использовать защитную одежду. В ее состав входит резина, пластик с наполнителями из свинца и его соединений.

Стоит отметить, что коэффициент ослабления гамма излучения зависит от того, из какого материала сделан защитный барьер. Так, например, лучшим металлом считается свинец в виду его свойства поглощать излучение в большом количестве.

Однако он плавится при  довольно низких температурах, поэтому в некоторых условиях используется более дорогой металл, например, вольфрам или тантал.

Еще один способ обезопасить себя – это измерить мощность гамма излучения в Вт. Кроме того, мощность измеряется также в зивертах и рентгенах.

Норма гамма излучения не должна превышать 0,5 микрозиверта в час. Однако лучше если этот показатель не будет выше 0,2 микрозиверта в час.

Совет

Чтобы измерить гамма излучение, применяется специальное устройство – дозиметр. Таких приборов существует довольно много. Часто используется такой аппарат, как «дозиметр гамма излучения дкг 07д дрозд». Он предназначен для оперативного и качественного измерения гамма и рентгеновского излучения.

Читайте также:  Тепловизор: назначение, устройство, принцип работы на пожаре

У такого устройства есть два независимых канала, которые могут измерять МЭД и Эквивалент дозировки.

МЭД гамма излучения это мощность эквивалентной дозировки, то есть количество энергии, которую поглощает вещество в единицу времени с учетом того, какое воздействие лучи оказывают на человеческий организм.

Для этого показателя также существуют определенные нормы, которые обязательно должны быть учтены.

Излучение способно негативно влиять на организм человека, однако даже для него  нашлось применение в некоторых сферах жизни.

Видео: Гамма-излучение

Источник: https://ZaOtravlenie.ru/izluchenie/gamma-izluchenie.html

Гамма-излучение: вред, опасность, способы защиты

Радиоактивность – природное явление, при котором происходит распад нестабильных ядер с выделением радиоизотопов и электромагнитного излучения.

Именно это излучение с очень короткой длиной волны (˂ 2х10-10 м) является γ-излучением, что обусловило его выраженные корпускулярные и слабые волновые свойства.

На шкале диапазонов излучения γ-лучи тесно граничат с рентгеновскими. Оба вида обладают высокой энергией и частотой, проникающей способностью.

Характеристика и использование

γ- лучи не содержат заряженных частиц, поэтому на их траекторию движения не оказывают влияние магнитные и электрические поля. Именно это свойство обусловило высокую проникающую способность излучения. Поток γ-квантов определяет корпускулярные свойства излучения. Их энергия составляет 4,14х10-15 эВ˟сек.

Источником γ-лучей являются космические тела – Солнце, пульсары, квазары, радиогалактики, сверхновые звезды. На Земле γ- лучи испускают атомные ядра и частицы, они возникают в результате ядерных реакций, аннигиляции пар частиц.

Движущиеся в сильном магнитном поле быстрые заряженные частицы при торможении испускают γ-лучи. γ-излучение является ионизирующим, то есть на пути движения сквозь среды образует ионы.

Распад разных видов излучения

Свойства γ-излучения обусловили его широкое применение в различных отраслях промышленности, сельского хозяйства, медицине. В сельском хозяйстве используют способность γ-лучей вызывать мутации в живых организмах.

Селекционеры, облучая зерна злаков, вывели устойчивые к низким температурам и полеганию высокоурожайные, стойкие к заболеваниям, раннеспелые сорта пшеницы, ячменя, сои, кукурузы, гречихи, хлопчатника и других сельскохозяйственных культур.

Обратите внимание

В настоящее время около 50% сельскохозяйственных культур получены с помощью мутагенеза, из них 98% при воздействии γ-лучей. При помощи радиомутации селекционерами был выведен новый вид тутового шелкопряда, дающего больше шелкового волокна, норка с необычным серебристым окрасом.

  Знакомьтесь – это радиация!Виды излучений альфа, бета, гамма

С помощью γ-лучей был выведен новый штамм грибка, уничтожающий насекомых-вредителей урожая. Препарат «Боверин» на его основе спас огромное количество зерна, овощей, фруктов. Стимулирующее действие γ- лучей применяют для увеличения и ранней всхожести многих культур, в том числе и в гидропонике.

Облучением культур дрожжей выведены новые формы, отличающиеся большим производством эргостерина, применяемого в производстве витаминов. Использование γ- излучения в микробиологической промышленности способствовало выведению новых штаммов плесневых грибков, которые синтезируют пенициллин, ауреомицин, стрептомицин и другие виды антибиотиков.

Под действием γ- лучей изменяется вирулентность патогенных микроорганизмов, что используется при выработке вакцин. Ионизирующие свойства γ-лучей используются для увеличения срока хранения многих продуктов – овощей, фруктов, зерна, молочной продукции, рыбы, икры. В медицине применяют для стерилизации оборудования и материалов, не подлежащих другим способам обеззараживания.

Лучевая терапия злокачественных заболеваний давно и прочно завоевала лидирующие позиции среди современных методов лечения раковых больных. γ-излучение используют в создании различных измерительных приборов – уровнемеров, высотомеров. С его помощью в геолофизике выполняют γ-каротаж.

Влияние γ-излучения на живые организмы

Все свойства γ-лучей, с таким успехом применяемые в промышленности, оказывают повреждающее влияние на живые клетки. Опыты по радиостимуляции животных дали положительные результаты по привесу, скорости роста, приплоду, но сократили продолжительность жизни.

Влияние гамма-излучений на организмы

γ-излучение в небольшой дозе стимулирует синтез нуклеиновых кислот, белков, ферментов, гормонов, повышает проницаемость мембран клеток, ускоряется метаболизм.

Но пусковым механизмом всех положительных процессов является угнетение некоторых генов. Под влиянием триггер-эффекторов происходит активизация или угнетение хромосом. Для организма эти вещества являются токсинами.

Поглощенные тканями организма γ-лучи вызывают образование свободных радикалов, способствуя усилению первичных окислительных процессов.

Отрицательные радикалы, образуемые в липидах и белках клеточных мембран, не только изменяют проницаемость цитомембраны, но и влияют на активность мембранных ферментов.

Хорошо известные гормоны роста, например, в больших количествах действуют на организм как токсины.

Влияние гамма-излучения на человека

Кроме того, триггер-эффекторы вызывают усиленное деление клетки, что при нарушении ее структуры и ДНК приводит к раковым опухолям. γ-облучение провоцирует активность ферментов из класса оксидоредуктаз, которые участвуют в гидролизе запасенных организмом веществ, что приводит к истощению.

Особенностями воздействия излучения на живой организм являются:

  1. γ-излучение обладает мутагенными и тератогенными свойствами, причем мутации могут закрепляться на генетическом уровне и передаваться следующим поколениям.
  2. Особенностью γ-излучения является его способность накапливаться в тканях, вызывая медленное патогенное воздействие. Даже небольшие дозу радиации, накапливаясь и суммируясь, вызывают тяжелые последствия.
  3. У γ-излучения есть скрытый период действия, из-за чего симптомы облучения проявляются тогда, когда накоплена значительная доза радиации.
  4. γ-излучение имеет высокую эффективность поглощенной энергии, поэтому даже небольшая доза повреждающе действует на клетки и ткани.
  5. Патогенное воздействие зависит от частоты воздействия γ-излучения. Гораздо меньше повреждения будут, если доза получена дробными порциями и через значительные промежутки времени.

Различные части тела человека по-разному реагируют на воздействие радиации. Смертельной дозой являются для:

  • головного мозга – 2-Зв;
  • легких – 10 Зв;
  • репродуктивных органов – 4-5 Зв;
  • конечностей – 20 Зв.

Источник: https://otravlen.net/gamma-izluchenie-opasnost/

Чем опасно гамма-излучение и способы защиты от него

Среди многообразия электромагнитных излучений, рядом с рентгеновскими лучами нашли себе «приют» очень короткие электромагнитные волны — это гамма-излучение. Имея ту же природу, что и свет, оно распространяется в пространстве с такой же скоростью 300 000 км/сек.

Однако ввиду его особых свойств, гамма-излучение оказывает сильнейшее отравляющее и травмирующее действие на живые организмы. Давайте выясним, что такое гамма-излучение, чем оно опасно и как защититься от него.

Чем опасно гамма-излучение

Источниками гамма-излучения являются космические лучи, взаимодействие и распад ядер атомов радиоактивных элементов и другие процессы. Приходя из далёких космических глубин или рождаясь на Земле, это излучение оказывает сильнейшее ионизирующее действие на человека.

В микромире существует закономерность, чем короче длина волны электромагнитного излучения, тем больше энергия у его квантов (порций). Поэтому можно утверждать, что гамма-излучение — это квантовый поток с очень большой энергией.

Чем же опасно гамма-излучение? Механизм разрушительного действия гамма-квантов заключается в следующем.

  1. Благодаря огромной проникающей способности «энергичные» гамма-кванты легко проникают в живые клетки, вызывая их повреждение и отравление.
  2. По пути своего движения они оставляют разрушенные ими молекулы (ионы). Эти повреждённые частицы ионизируют новую порцию молекул.
  3. Такая трансформация клеток вызывает сильнейшие изменения в её различных структурах. А изменившиеся или разрушенные составные части облучённых клеток разлагаются и начинают действовать как яды.
  4. Заключительным этапом является рождение новых, но дефектных клеток, которые не могут выполнять необходимые функции.

Опасность гамма-излучения усугубляется отсутствием у человека механизма способного ощутить это воздействие вплоть до смертельных доз.

Различные органы человека обладают индивидуальной чувствительностью к его воздействию.

Наибольшую уязвимость к атаке этого излучения проявляют быстро делящиеся клетки кроветворной системы, пищеварительного тракта, лимфатических желёз, половых органов, волосяных фолликул и структуры ДНК.

Проникшие в них гамма-кванты, разрушают слаженность всех процессов и приводят к многочисленным мутациям в механизме наследственности.

Особая опасность гамма-излучения заключается в его способности накапливаться в организме, а также наличие скрытого периода воздействия.

Где применяется гамма-излучение

При неконтролируемом, стихийном воздействии этого излучения последствия могут быть весьма тяжёлые. А учитывая, что оно обладает ещё и «инкубационным» периодом расплата может настигнуть через много лет и даже через поколения.

Однако пытливые умы учёных сумели найти многочисленные применения гамма-излучению:

  • стерилизация некоторых продуктов, медицинских инструментов и оборудования;
  • контроль за внутренним состоянием изделий (гамма-дефектоскопия);
  • определение глубины скважин в геологии;
  • точное измерение расстояний, преодолеваемых космическими аппаратами;
  • дозированное облучение растений позволяет получать их мутации, из которых затем отбирают высокопродуктивные сорта.

Как эффективный терапевтический метод лечения гамма-излучение применяется в медицине. Эта методика носит название лучевой терапии. В ней используется особенность гамма-излучения воздействовать в первую очередь на быстро делящиеся клетки.

Этот метод применяют для лечения рака, сарком в тех случаях, когда другие методы лечения неэффективны. Дозированное и направленное облучение позволяет подавить жизнедеятельность патологических клеток опухоли.

Где ещё встречается гамма-излучение

Сейчас мы знаем, что такое гамма-излучение и осознаём сопряжённые с ним опасности. Поэтому постоянно изыскиваем новые способы как защититься от него. Но столетие назад отношение к радиоактивности было более беспечным.

  1. старое медицинское оборудование

    Начиная с 1902 года радиоактивной глазурью покрывали предметы керамики и ювелирные украшения, с помощью подобных излучающих добавок изготавливали цветное стекло. Поэтому бережно хранимые старинные сувениры, могут являться миной замедленного действия.

  2. Немалую опасность могут таить предметы, найденные или приобретаемые на территории расформированных воинских частей, в старом медицинском или измерительном оборудовании.
  3. Многие рачительные хозяева находят в металлоломе незнакомые предметы, разбирают их из-за любопытства или в надежде найти им применение. Прежде чем взять такую вещицу в руки, попытайтесь узнать окружающий её радиационный фон.

Как защититься от гамма-излучения

Вся наша жизнь проходит на фоне естественных электромагнитных излучений. И вклад гамма-квантов в этот фон достаточно значителен. Однако, несмотря на их периодические всплески, вред их для живых организмов минимален.

Здесь землян спасают огромные расстояния от источников этих излучений. Совсем иное — земные источники. Особую опасность несут АЭС: их ядерные реакторы, технологические контуры и другое оборудование.

Организация защиты от гамма-излучения персонала на этих и других подобных объектах включает следующие мероприятия.

  1. Защиту временем, то есть ограничением времени работы. Ликвидаторам аварии на Чернобыльской АЭС на выполнение конкретной работы давалось несколько минут. Промедление вызывало дополнительную дозу облучения и тяжёлые последствия.
  2. Защиту расстоянием (от работающего до опасной зоны).
  3. Метод защиты барьером (материалом).

Для эффективной защиты от гамма-излучения используются материалы с большим атомным номером и высокой плотностью. Этим критериям удовлетворяют:

  • свинец;
  • бетон;
  • свинцовое стекло;
  • сталь.

Наилучшей интенсивностью поглощения γ-лучей обладает свинец. Пластинка свинца толщиной в 1 см, 5 см бетона и 10 см воды — ослабляют это излучение в два раза, однако, не являются для них непреодолимой преградой. Применение свинца в качестве защиты против воздействия гамма-излучения ограничивается его низкой температурой плавления. Поэтому в горячих зонах используют дорогие металлы:

Для изготовления защитной одежды сотрудников, работающих в зоне действия источников излучения или радиоактивного заражения используются специальные материалы. Его основу составляет резина, пластик или каучук со специальным наполнителем из свинца и его соединений.

В качестве средств защиты могут быть задействованы противорадиационные экраны.

Из всех видов радиации именно гамма-излучение обладает наибольшей проникающей способностью. В этом случае наиболее эффективным способом защиты от внешнего гамма-излучения являются специальные укрытия, а при их отсутствии — подвалы домов. Чем толще стены, тем надёжнее укрытие. Подвал многоэтажного дома способен ослабить действие радиации в 1000 раз.

Читайте также:  Область нормативного обслуживания

К сожалению, опасность радиационного заражения может возникнуть совершенно внезапно. И облучение могут получить люди совершенно не имеющие отношения к ядерной энергетике. Надеемся, что полученная информация поможет вам сохранить своё здоровье и уберечься от угрозы дополнительного радиоактивного облучения.

Источник: http://otravleniy.info/izluchenie/zashhita-ot-gamma-izlucheniya.html

Что такое гамма-излучение и чем оно опасно?

О вреде рентгенологического исследования знают многие. Есть и такие, кто слышал об опасности, которую представляют лучи из гамма-категории. Но далеко не все в курсе, что такое гамма-излучение и какую конкретно опасность оно таит.

Среди многочисленных видов электромагнитного излучения существуют гамма-лучи. О них обыватели знают гораздо меньше, чем о рентгеновском излучении. Но это не делает их менее опасными. Главной особенностью этого излучения считается небольшая длина волны.

По своей природе они похоже на свет. Скорость их распространения в пространстве идентичная световой, и составляет 300 000 км/сек. Но из-за своих особенностей такое излучение несет сильное токсическое и травмирующее воздействие на все живое.

Главные опасности гамма-излучения

Основными источниками гамма-облучения числятся космические лучи. Также на их образование влияет распад атомных ядер различных элементов с радиоактивной составляющей и несколько других процессов. Вне зависимости от того, каким конкретно способом излучение попало на человека, оно всегда несет идентичные последствия. Это сильное ионизирующее воздействие.

Физики отмечают, что самые короткие волны электромагнитного спектра имеют самую большую энергетическую насыщенность квантов. Из-за этого гамма-фон получил славу потока с большим энергетическим запасом.

Его влияние на все живое заключается в следующих аспектах:

  • Отравление и повреждение живых клеток. Вызвано это тем, что проникающая способность гамма-излучения отличается особенно высоким уровнем.
  • Круговорот ионизации. По пути движения луча разрушенные из-за него молекулы начинают активно ионизировать следующую порцию молекул. И так до бесконечности.
  • Трансформация клеток. Разрушенные подобным образом клетки вызывают сильные изменения в различных ее структурах. Получившийся результат негативно сказывается на организме, превращая здоровые компоненты в яды.
  • Рождение мутированных клеток, которые не способны исполнять возложенные на них функциональные обязанности.

Все органы человека по-разному реагируют на гамма-частицы. Некоторые системы справляются лучше других за счет сниженной индивидуальной чувствительности к столь опасным волнам.

Хуже всего такое воздействие сказывается на кроветворной системе. Объясняется это тем, что именно тут присутствуют одни из наиболее быстро делящихся клеток в организме. Также от такого облучения сильно страдают:

  • пищеварительный тракт;
  • лимфатические железы;
  • половые органы;
  • волосяные фолликулы;
  • структура ДНК.

Проникнув в структуру цепочки ДНК, лучи запускают процесс многочисленных мутаций, сбивая природный механизм наследственности. Далеко не всегда врачи могут сразу определить, в чем причина резкого ухудшения самочувствия больного. Происходит это за счет длительного латентного периода и способности облучения накапливать вредоносное действие в клетках.

Области применения гамма-излучения

Разобравшись с тем, что такое гамма-излучение, людей начинает интересовать сфера использования опасных лучей.

Согласно последним исследованиям, при неконтролируемом стихийном воздействии излучения из гамма-спектра последствия дают о себе знать нескоро. В особо запущенных ситуациях облучение может «отыграться» на следующем поколении, не имея видимых последствий для родителей.

Несмотря на доказанную опасность таких лучей, ученые все равно продолжают использовать это излучение в промышленных масштабах. Зачастую его применение встречается в таких отраслях:

  • стерилизация продуктов;
  • обработка медицинского инструментария и техники;
  • контроль над внутренним состоянием ряда изделий;
  • геологические работы, где требуется определить глубину скважины;
  • космические исследования, где нужно произвести замер расстояния;
  • культивирование растений.

В последнем случае мутации сельскохозяйственных культур позволяют использовать их для выращивания на территории стран, изначально к этому не приспособленных.

Применяются гамма-лучи в медицине при лечении различных онкологических заболеваний. Метод получил название лучевой терапии. Он направлен на то, чтобы максимально сильно воздействовать на клетки, которые делятся особо быстро.

Но помимо утилизации таких вредных для организма клеток происходит убийство сопутствующих здоровых клеток. Из-за такого побочного эффекта врачи многие годы пытаются отыскать более результативные лекарства для борьбы с раком.

Важно

Но существуют такие формы онкологии и сарком, от которых избавиться любым другим известным науке методом не получится. Тогда и назначается лучевая терапия, чтобы в сжатые сроки подавить жизнедеятельность патогенных опухолевых клеток.

Другие сферы использования излучения

Сегодня энергия гамма-излучения изучена достаточно хорошо, чтобы понимать все сопутствующие риски. Но еще лет сто назад люди относились к такому облучению более пренебрежительно. Их познания в свойствах радиоактивности были ничтожно малы. Из-за такого незнания многие люди страдали от непонятных для докторов прошлой эпохи болезней.

Встретить радиоактивные элементы можно было в:

  • глазури для керамики;
  • ювелирных украшениях;
  • старинных сувенирах.

Некоторые «приветы из прошлого» могут нести в себе опасность даже сегодня. Особенно это касается частей устаревшего медицинского или военного оборудования. Их находят на территории заброшенных воинских частей, госпиталей.

Также огромную опасность представляет радиоактивный металлолом. Он может нести угрозу сам по себе, а может быть найден на территории с повышенной радиацией. Чтобы избежать скрытого воздействия от предметов металлолома, найденного на свалке, каждый объект нужно проверять со специальным оборудованием. Он может выявить его настоящий радиационный фон.

В «чистом виде» наибольшую опасность гамма-излучение представляет из таких источников:

  • процессы в космическом пространстве;
  • опыты с распадом частиц;
  • переход ядра элемента с высоким содержанием энергии в состоянии покоя;
  • движении заряженных частиц в магнитном поле;
  • торможении заряженных частиц.

Первооткрывателем в области изучения гамма-частиц стал Поль Виллар. Этот французский специалист в сфере физических изысканий заговорил о свойствах излучения гамма-лучей еще в 1900 году. Натолкнул его на это эксперимент по изучению особенностей радия.

Как защититься от вредоносного излучения?

Чтобы защита зарекомендовала себя в качестве действительно эффективного блокиратора, нужно подходить к ее созданию комплексно. Причина тому – естественные излучения электромагнитного спектра, которые окружают человека постоянно.

В обычном состоянии источники подобных лучей считаются относительно безвредными, так как их доза минимальна. Но помимо затишья в окружающей среде существуют и периодические всплески облучения. Жителей Земли от космических выбросов защищает удаленность нашей планеты от других. Но спрятаться от многочисленных атомных электростанций у людей не получится, ведь они распространены повсеместно.

Оборудование таких учреждений несет особую опасность. Ядерные реакторы, а также различные технологические контуры представляют угрозу для среднестатистического гражданина. Ярким тому примером выступает трагедия на Чернобыльской АЭС, последствия которой всплывают до сих пор.

Чтобы свести к минимуму влияние гамма-излучения на организм человека на особо опасных предприятиях, была введена собственная система безопасности. Она включает в себя несколько основных пунктов:

  • Ограничение по времени нахождения вблизи опасного объекта. Во время операции по ликвидации последствий на ЧАЭС каждому ликвидатору предоставлялось всего несколько минут для проведения одного из многочисленных этапов общего плана по устранению последствий.
  • Ограничение по расстоянию. Если позволяет ситуация, то все процедуры должны производиться в автоматическом режиме максимально удаленно от опасного объекта.
  • Наличие защиты. Это не только специальная форма для работника особо опасного производства, но и дополнительные защитные барьеры из разных материалов.

В качестве блокиратора для таких барьеров выступают материалы с повышенной плотностью и высоким атомным номером. Среди наиболее распространенных принято называть:

  • свинец,
  • свинцовое стекло,
  • стальной сплав,
  • бетон.

Лучше всего себя зарекомендовал на этом поприще свинец. Он обладает наиболее высокой интенсивностью поглощения γ-лучей (так называют гамма-лучи). Самым результативным сочетанием считается использование совместно:

  • свинцовой пластины толщиной в 1 см;
  • бетонной прослойки 5 см по глубине;
  • водной толщи глубиной 10 см.

Все вместе это позволяет снизить излучение в два раза. Но полностью от него избавиться все равно не получится. Также свинец невозможно использовать в среде повышенных температур. Если в помещении постоянно держится режим высокой температуры, то легкоплавкий свинец делу не поможет. Его необходимо заменить дорогостоящими аналогами:

Все сотрудники предприятий, где поддерживается высокая гамма-радиация, обязаны носить регулярно обновляющуюся спецодежду. Она содержит в себе не только свинцовый наполнитель, но и резиновое основание. При необходимости костюм дополняют противорадиационные экраны.

Если же радиация накрыла большой участок территории, то лучше сразу спрятаться в специальное укрытие. Если его поблизости не оказалось, можно воспользоваться подвалом. Чем толще стена такого подвала, тем ниже вероятность получить высокую дозу радиации.

Источник: http://medtox.net/radioaktivnoe-izluchenie/elektromagnitnye-volny-chto-takoe-gamma-izluchenie-i-ego-vred

Гамма излучение: о вреде и пользе :

Нагромождение слухов и страшилок вокруг таких понятий, как радиация, ионизация, гамма излучение, рождают путаницу и страхи у всех, кто не является дозиметристом-радиологом или физиком-ядерщиком. Попробуем разобраться в обилии фактов и разрозненных знаний, полученных обывателем в основном из средств массовой информации.

Терминология и теория

Для понимания основ допускаем, что всем известно о строении атомов всех веществ. Ядро и электроны, вращающиеся вокруг него, образуют систему с нейтральным зарядом. Если один или несколько электронов выбить из этой системы, атом приобретет определенный заряд и будет называться ион.

Выбивание электронов из системы ядро-электроны и есть процесс ионизации. Радиация — это и есть ионизирующее излучение, пучок частиц, выбивающих электроны, придающий атомам особенные свойства.

Всего известно три вида излучений, способных привести к ионизации элементарных частиц. В названии использованы греческие буквы: альфа-, бета- и гамма-излучение.

Излучения – какие они?

Любое из этих излучений — это высокоскоростной поток частиц, размер которых меньше атома. Ионизирующие частицы представляют опасность, пока они движутся. Но движение не может быть постоянным и, выбиваются электроны или нет, частицы теряют свою скорость и останавливаются. После чего они или остаются в веществе, или им поглощаются.

Все имеет время своего существования, и радиоактивные (ионизирующие) частицы не исключение. Упомянутые три вида излучений образованы разными частицами (их называют квантами) с различной скоростью и степенью проникания в вещество.

Альфа, бета, гамма

Излучение первой группы состоит из альфа-квантов, которые очень быстро теряют скорость, потому что тяжелые. Их жизненный путь всего несколько десятков микрометров.

Второй вид излучения образуют бета-кванты, отличающиеся очень большой скоростью. Проникающая способность их больше и в живой организм они проникнут на несколько миллиметров.

Гамма излучение это поток гамма-квантов, наделенных большой энергией и летящих со скоростью света, наиболее скоростные кванты, которые обладают свойствами частиц и волн.

В ключе наибольшей опасности по воздействию на человека гамма-излучение стоит на первом месте.

В чем опасность?

Альфа-кванты, конечно, очень интенсивны, но лист обычной бумаги станет для них непроходимым барьером. К тому же для воздействия необходимо ну очень близко находиться к объекту излучения.

Бета-частицы имеют маленькую массу и легко меняют направление движения при наличии препятствий. Обычное окно не пропустит это излучение. При прямом соприкосновении с телом человека поток бета-квантов может вызвать ожоги кожи.

Совет

Гамма-излучение, в отличие от альфа- и бета-, имеет огромную проникающую способность. Кроме того, особенность этого вида в том, что под его воздействием разрушение атома вещества происходит с образованием нового нестабильного по состоянию элемента.

Читайте также:  Аэрозольный генератор переносной (агп)

Именно это излучение чаще всего понимают под радиацией. От него не спасет стеклянная преграда – тут необходимы экраны из свинца и мощные конструкции из бетона.

Как это работает?

Суть механизма разрушающего воздействия гамма-квантов:

  • На своем пути кванты оставляют за собой ионы, которые, в свою очередь, становятся источником ионизации.
  • Проходя через клетки живого организма, часть молекул разрушается и превращается в яд.
  • Это излучение является сильнейшим мутагеном, который вызывает изменения на всех уровнях генетического материала.

Наиболее подвержены повреждениям те клетки организма, которые быстро делятся. Мутации передаются последующим поколениям клеток, усугубляя положение. Так, первыми страдают система образования клеток крови, лимфатические узлы, репродуктивные клетки, пищеварительные органы и волосяные сумки.

Откуда это все берется?

Естественные источники гамма-излучения существовали задолго до освоения человеком ядерной физики. Искусственные источники – объекты ядерной энергетики – не зря вызывают повышенное внимание специалистов в сфере безопасности.

Важно помнить, что получить в быту дозы облучения, представляющие серьезную опасность для жизни, почти невозможно. И близость к объектам атомной энергетики тут ни при чем.

Из естественных возможностей облучения можно выделить внешнее и внутреннее. Внешнее происходит в нашей жизни постоянно – радиация Солнца и космических галактик, излучения горных пород, особенно вулканических, и воздуха. Внутреннее вызывается продуктами или водой, попадающими в наш организм.

Уровень излучения (радиационный фон) бывает далек от среднего показателя. Есть места, где он всегда повышен, например, высокогорные местности, вблизи вулканов, а еще на космических кораблях и в кабинах авиалайнеров.

Человечество приспособилось жить в существующих диапазонах излучений и сформировало определенный биологический запас прочности, что без видимых нарушений позволяет выдержать облучение во много раз большее.

А как же польза?

Как известно, все в нашем мире дуально. И гамма-излучение не исключение. При умелом обращении и использовании современного оборудования и средств защиты и оно приносит пользу человеку. Вот лишь несколько примеров использования гамма-квантов:

  • стерилизация оборудования и инструментов в медицине;
  • гамма-дефектоскопия – эффективный метод сверхточного определения дефектов деталей;
  • определение расстояний – от глубины скважин и особенностей полостей земной коры, до космических измерений;
  • в биотехнологии применяют гамма-облучение для получения мутантных организмов для выведения новых пород животных и сортов растений;
  • как элемент лучевой терапии при лечении онкологических заболеваний.

Способы защиты

Как уже говорилось, природный фон не может стать существенным элементом заражения. Но после развития ядерной энергетики и освоения энергии полураспада радиоактивных частиц, облучение может настигнуть нас внезапно. Трагедия на Чернобыльской АЭС продемонстрировала миру неготовность к таким последствиям в освоении мирного атома.

Эффективны в целях защиты от гамма-излучения только специализированные убежища. Но и подвал дома ослабит воздействие от излучения в тысячу раз.

Не лишним будет и внимательное отношение к предметам со специальной маркировкой. Например, в датчиках пожароопасности используется радиоактивный плутоний. А циферблаты датчиков обледенения и водолазных часов содержится соль радия 226. Снаружи эти предметы не опасны, но не стоит их разбирать.

Меры предосторожности

В уголовном кодексе предусмотрена статья за намеренное или случайное радиоактивное загрязнение. Поэтому если вы обнаружили предмет с радиационной маркировкой, то:

  • не разбирайте его и не выбрасывайте;
  • сообщите в специализированную службу;
  • обезопасьте себя и окружающих, отойдя на возможное расстояние от источника.

Личная профилактика сводится к тщательному мытью рук, ведь загрязнение радиоактивного характера передается подобно бактериальному.

Источник: https://www.syl.ru/article/309154/gamma-izluchenie-o-vrede-i-polze

Влияние радиации на организм человека. Действие гамма-излучения на организм человека

Не секрет, что радиация существовала на планете Земля и в космическом пространстве с давних времен.

Хотя представления о радиации, в частности о гамма-излучении, практически у каждого из нас весьма скудны и наполнены мифами, иметь первичные знания, на наш взгляд, обязательно в современном мире.

Гамма-излучение – это очень короткие электромагнитные волны (меньше 2·10-10 м), которые характеризуются большей проникающей способностью при прочих равных условиях, по сравнению с альфа- и бета-излучением. Гамма-излучение способно задержать только бетонная или свинцовая стена.

Обратите внимание

Кроме того, гамма-кванты вызывают ионизацию вещества (появляющиеся на пути движения гамма-кванта ионы легко ионизируют новую порцию молекул). Так, ионизация молекулы клетки живого организма приводит к разрушению химических связей в молекуле, что приводит к ряду негативных и необратимых изменений, природа которых зависит от полученной дозы облучения.

Поврежденные части клеток организма начинают разлагаться, проявляют свое действие в качестве ядов и способствуют появлению дефектных клеток, которые не способны выполнять необходимые функции для обеспечения нормальной жизнедеятельности организма.

Наибольшую опасность для организма представляет внешнее облучение, которое повреждает и отравляет все органы и ткани. В этом случае существующий источник излучения находится за пределами организма человека. Так, различные органы реагируют на радиацию по-разному.

Наиболее сильный вред ионизирующее излучение способно наносить репродуктивным органам, органам зрения, системе кровообращения, костному мозгу. Интересно, что именно дети в наибольшей степени подвержены вредному воздействию гамма-излучения по сравнению с взрослыми.

Облучение может вызвать всевозможные заболевания: нарушение обмена веществ, появление злокачественных опухолей, лейкоз, бесплодие, инфекционные осложнения, заболевания кожи и т.д.

Согласно проведенным исследованиям, при однократном воздействии гамма-квантов эквивалентная доза излучения ~90-100 Зв (зиверт) является смертельной (ввиду повреждения центральной нервной системы). 5-6 Зв – порядка 50% людей умирает в течение нескольких месяцев (поражение клеток костного мозга).

Облучение дозой 1 Зв является нижней границей развития лучевой болезни (легкая тошнота, общая слабость, головокружение, падает число лейкоцитов в крови). В среднем, для жителя России годовая эквивалентная доза облучения составляет 0,0036 Зв. Для сравнения, разовое облучение при проведении рентгеноскопии желудка составляет 0,75 Зв.

Следует отметить, что человеческий организм не способен ощутить опасное воздействие гамма-излучения, иногда до смертельной дозы. Обратимые и необратимые биологические изменения, которые вызывает облучение, могут быть соматическими (появляются непосредственно у человека) и генетическими (вызывают изменения, проявляющиеся у потомков).

Важно помнить: действие любого излучения, даже малых доз, не проходит бесследно для здоровья человека. Нарушается нормальное протекание важнейших процессов, приводящее к многочисленным мутациям, нарушению и изменению структуры молекулы ДНК. Гамма–излучение способно накапливаться в организме.

Интересный факт: гамма-излучение является одним из самых эффективных методов лечения рака – метод лучевой терапии. Направленное и дозированное действие излучение способно подавить развитие клеток опухоли. Наиболее опасными источниками гамма-излучения являются атомные электростанции (АЭС), а именно – ядерные реакторы и другое оборудование.

В обычной жизни в случае возникновения аварийной ситуации наиболее эффективным средством защиты являются специальные укрытия, например, подвал дома (ослабляет действие радиоактивного излучения до 1000 раз).

Атомно-абсорбционное определение паров ртути в атмосферном воздухе населенных мест и воздухе рабочей зоны проводится при помощи специальных средств измерении (дозиметр-радиометр МКС-01СА1М, ДКС-96 и т.д.). При этом измерения проводятся в предварительно проветренных помещениях при закрытых окнах и дверях. Измерения проводятся либо на уровне органов дыхания, либо на уровне пола (для определения источника поступления паров ртути). Объем пробы определяется в зависимости от концентрации паров ртути в воздухе.

К несчастью, опасность радиационного облучения организма в современном высокотехнологичном мире существует всегда, поэтому чрезвычайно важно знать о влиянии различных видов излучения (в том числе, гамма-излучении) и использовать информацию для сохранения здоровья.

Источник: http://ecotestexpress.ru/articles/vliyanie-radiatsii-na-organizm-cheloveka-deystvie-gamma-izlucheniya-na-organizm-cheloveka/

Гамма-излучение

Физика > Гамма-излучение

Рассмотрите мощность, источники и измерение гамма-излучения. Узнайте, что такое гамма-распад, высокая частота электромагнитных лучей, диапазон длины волны.

Гамма-лучи – электромагнитные волны, формирующиеся в радиоактивном распаде с частотами больше 1019 Гц.

Задача обучения

  • Выяснить диапазон гамма-лучей, отметив биологическое влияние.

Основные пункты

  • Это наивысшее электромагнитное излучение с энергией больше 100 кэВ, частотой – 1019 Гц и длиной волн – 10 пикометров.
  • Гамма-лучи при радиоактивном распаде определяются этой категорией, не основываясь на энергии, поэтому нет нижнего предела.

  • По характеристикам совпадают с рентгеновскими лучами, но отличаются источником происхождения.
  • Среди природных источников: радиоизотопы и космические лучи.
  • Это ионизирующая разновидность, поэтому несет биологическую опасность.

Термины

  • Гамма-лучи – высокочастотное электромагнитное излучение, созданное при радиоактивности.
  • Гамма-распад – ядерная реакция с производством гамма-лучей.
  • Ионизирующее излучение – может привести к ионизации в веществах.

Гамма-излучение — электромагнитные лучи на высокой частоте и энергии. Обычно показатели превышают 10 эксагерц (1019 Гц), по энергии – 100кэВ, а длине волны – 10 пикометров (меньше диаметра атома).

Гамма-лучи в радиоактивном распаде входят в эту категорию, не зависимо от энергии, поэтому нижнего предела не существует.

Излучение гамма-лучей (γ) из атомного ядра

Речь идет об ионизирующих лучах, поэтому они несут биологическую угрозу. Создаются распадом высокоэнергетических атомных ядер (гамма-распад) и прочими процессами. Гамма-лучи в 1900 году нашел Пол Вильяр, изучавший распад радия. В 1903 году Эрнест Резерфорд дал им наименование «гамма».

Источники гамма-лучей

Среди природных источников гамма-лучей стоит вспомнить радиоизотопы вроде калия-40, а также вторичное излучение атмосферных контактов с космическими лучами. Некоторые земные источники создают гамма-лучи, но не обладают ядерным происхождением. Это удары молнии и зеленые гамма-вспышки.

В астрономических процессах создается много гамма-лучей.

Все дело в высокоэнергетических электронах, которые генерируют вторичные гамма-лучи в тормозном излучении, обратном комптоновском рассеивании и синхронном излучении.

Большая их часть отбивается земной атмосферой и находится космическими аппаратами. Искусственными источниками служат ядерные реакторы и эксперименты в физике высоких энергий.

Гамма и рентгеновские лучи

Рентгеновское и гамма-излучение похожи по характеристикам, но отличаются источником. На более высоких частотах гамма-лучи сильнее проникают и несут больше разрушений живой ткани. Их также применяют в области медицины для терапии рака.

В последние десятилетия подход к их отличию резко изменился. Ранее использовался критерий длины волны, где показатель ниже 10-11 м автоматически относил волну к гамма. Но искусственным источникам удалось воспроизводить это явление и при глубоком изучении приняли решение отличать их по источнику происхождения. Гамма создаются ядром, а рентгеновские – электронами вне ядра.

Исключения встречаются в астрономии, где гамма-распад способен возникнуть при послесвечении сверхновых и прочих процессов с высокими энергиями, которые не связаны с радиоактивным распадом. Наиболее яркий пример – длительные гамма-всплески, чей механизм генерации не сходится с радиоактивным распадом. Они связаны с крушением звезд – гиперновые.

Это снимок неба в 100 МэВ, сделанный на прибор EGRET космического корабля CGRO. Яркие пятна – пульсары (вращающиеся нейтронные звезды с мощными магнитными полями). Ниже и выше плоскости – квазары (галактики со сверхмассивными черными дырами)

Влияние на здоровье

Любая ионизирующая радиация серьезно вредит на клеточном уровне. Но альфа и бета-частицы практически не проникают, поэтому вред наносится на локализированном уровне (радиационный ожог). А гамма-лучи и нейтроны сильнее проникают, из-за чего происходит диффузное повреждение организма. Наиболее опасные формы гамма-лучей создаются при энергиях 3-10 МэВ.

(1

Источник: https://v-kosmose.com/fizika/gamma-izluchenie/

Ссылка на основную публикацию